Genetic deletion of placenta growth factor in mice alters uterine NK cells.
نویسندگان
چکیده
Placenta growth factor (PlGF; formerly PGF), a vascular endothelial growth factor gene family member, is expressed in human implantation sites by maternal uterine NK (uNK) and fetal trophoblast cells. Lower than normal concentrations of blood and urinary PlGF have been associated with impending onset of pre-eclampsia, a hypertensive disease of late human gestation characterized by limited intravascular trophoblast invasion. In pregnant rodents, delivery of the PlGF antagonist sFlt-1 or S-endoglin induces pre-eclampsia-like lesions. Mice genetically deleted in PlGF reproduce, but neither their implantation sites nor their uNK cell development are described. We combined real-time PCR of endometrium from nonpregnant and gestation day (gd)6-18 C57BL6/J (B6) mice with immunohistology to analyze PlGF expression in normal mouse pregnancy. To estimate the significance of uNK cell-derived PlGF, PlGF message was quantified in mesometrial decidua from pregnant alymphoid Rag2 null/common gamma chain null mice and in laser capture-microdissected B6 uNK cells. Histopathologic consequences from PlGF deletion were also characterized in the implantation sites from PlGF null mice. In B6, decidual PlGF expression rose between gd8-16. uNK cells were among several types of cells transcribing PlGF in decidualized endometrium. Immature uNK cells, defined by their low numbers of cytoplasmic granules, were the uNK cells displaying the greatest number of transcripts. PlGF deletion promoted the early differentiation high numbers of binucleate uNK cells (gd8) but had no other significant, morphometrically detectable impact on implantation sites. Thus, in mice, PlGF plays an important role in successful uNK cell proliferation and/or differentiation.
منابع مشابه
I-6: Remodelling Uterine Spiral Arteries inPregnancy
Background: During the first trimester of pregnancy the uterine spiral arteries that supply blood to the placenta are remodelled, creating heavily dilated conduits lacking maternal vasomotor control. To effect permanent vasodilatation, the internal elastic lamina and medial elastic fibres must be degraded. Failure of remodelling is a key characteristic of the pathological placenta and is though...
متن کاملThe Residual Innate Lymphoid Cells in NFIL3-Deficient Mice Support Suboptimal Maternal Adaptations to Pregnancy
Uterine NK cells are innate lymphoid cells (ILC) that populate the uterus and expand during pregnancy, regulating placental development and fetal growth in humans and mice. We have recently characterized the composition of uterine ILCs (uILCs), some of which require the transcription factor NFIL3, but the extent to which NFIL3-dependent cells support successful reproduction in mice is unknown. ...
متن کاملAssessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy.
In mouse and human, precursors of NK cell lineage home to decidualizing uteri. To assess the requirement for IL-15, an essential cytokine for NK differentiation in lymphoid tissue, on uterine NK (uNK) cell differentiation, implantation sites from IL-15(-/-) mice were analyzed histologically. IL-15(-/-) implantation sites had no uNK cells, no spiral-artery modification, and lacked the decidual i...
متن کاملInduced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice
Decidual NK (dNK) cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth...
متن کاملSimultaneous Ablation of Uterine Natural Killer Cells and Uterine Mast Cells in Mice Leads to Poor Vascularization and Abnormal Doppler Measurements That Compromise Fetal Well-being
Intrauterine growth restriction (IUGR) is a serious pregnancy complication with short- and long-term health consequences. The mechanisms underlying this condition are not well understood. Animal models are the basis for understanding the causes of IUGR and for developing useful therapeutic strategies. Here, we aimed to ascertain the in utero growth of fetuses from NK (natural killer cells)/MC (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 178 7 شماره
صفحات -
تاریخ انتشار 2007